16 research outputs found

    Developing technological pedagogical science knowledge through educational computational chemistry: a case study of pre-service chemistry teachers’ perceptions

    Get PDF
    The purpose of this descriptive case study was to develop pre-service chemistry teachers’ Technological Pedagogical Science Knowledge (TPASK) through novel computational chemistry modules. The study consisted of two phases starting with designing a computational chemistry based learning environment followed by a case study where students’ perceptions towards educational computational chemistry were explored. First, we designed an authentic research-based chemistry learning module that supported problem-based learning through the utilization of computational chemistry methods suitable for pre-service chemistry education. The objective of the learning module was to promote learning of specific chemistry knowledge and development of scientific skills. Systematic design decisions were made through the TPASK framework. The learning module was designed for a third-year physical chemistry course taken by pre-service chemistry teachers in Chile. After the design phase, the learning module was implemented in a course and students’ perceptions were gathered using semi-structured group interviews. The sample consisted of 22 pre-service chemistry teachers. Data were analyzed through qualitative content analysis using the same TPASK framework employed in the learning module design. Based on our findings, pre-service chemistry teachers first acquired Technological Scientific Knowledge (TSK) and then developed some elements of their TPASK. In addition, they highly appreciated the combination of student-centred problem-based learning and the use of computational chemistry tools. Students felt the educational computational learning environment supported their own knowledge acquisition and expressed an interest in applying similar learning environments in their future teaching careers. This case study demonstrates that learning through authentic real-world problems using educational computational methods offers great potential in supporting pre-service teachers’ instruction in the science of chemistry and pedagogy. For further research in the TPASK framework, we propose there would be significant benefit from developing additional learning environments of this nature and evaluating their utility in pre-service and in-service chemistry teacher’s education.Peer reviewe

    Reaktiokinetiikan oppiminen rikkakasvien torjunta-aineiden kestävän kemian avulla: tapaustutkimus tulevien kemian opettajien käsityksistä

    Get PDF
    Att lära sig grunderna i kemisk kinetik på universitetsnivå är utmanande, vilket bland annat beror på begreppens abstrakta natur och den begränsade kopplingen till vardagliga tillämpningar. Denna studie bestod av två faser. I det första steget, en inlärningsmiljö för inlärningskinetik baserad på hållbar kemi. Sammanhanget var den samhällsvetenskapliga modulen för miljökemi, som tittade på de kinetiska processerna för herbicider i vulkaniskbaserade jordar och deras potential att förorena grundvatten. Syftet med inlärningsmiljön var att bidra till utvecklingen av hållbara utvecklingsfärdigheter, att främja inlärning av kemisk kunskap i sammanhang och att utveckla vetenskapliga färdigheter. Materialet utformades för två kurser i analytisk kemi och en kurs i fysikalisk kemi i ett lärarutbildningsprogram. Effektiviteten av materialet studerades med hjälp av elevernas uppfattningar. Urvalet omfattade 22 studenter, som delades in i tre målgrupper. Materialet analyserades och klassificerades med hjälp av kvalitativ innehållsanalys med hjälp av TPASK-ramverket (Technology Pedagogical Science Knowledge). Baserat på resultaten förvärvade studenter kontextualiserad kunskap om kemi och utvecklade färdigheter och kunskaper relaterade till användning av digitala resurser och kalkylblad i ett vetenskapligt sammanhang. Denna fallstudie visar att den problembaserade inlärningsmetoden erbjuder stor potential att stödja ovanstående färdigheter.Kemiallisen kinetiikan perusteiden opettaminen korkeakoulutasolla on haastavaa, mikä johtuu mm. käsitteiden abstraktista luonteesta ja rajallisesta yhteydestä arkipäivän sovelluksiin. Tämä tutkimus koostui kahdesta vaiheesta. Ensimmäisessä vaiheessa kestävään kemiaan pohjautuva reaktiokinetiikan oppimisympäristö. Kontekstina toimi sosio-tieteellinen ympäristökemian moduuli, jossa perehdyttiin rikkakasvien torjunta-aineiden kineettisiin prosesseihin tulivuoren tuhkapohjaisessa maaperässä ja niiden mahdollisuuteen saastuttaa pohjavesiä. Oppimisympäristön tavoitteena oli myötävaikuttaa kestävän kehityksen taitojen kehittämiseen, edistää asiayhteyteen kemiatietojen oppimista ja kehittää tieteellisiä taitoja. Materiaali suunniteltiin kahdelle analyyttisen kemian kurssille ja opettajankoulutusohjelman fysikaalisen kemian kurssille. Materiaalin vaikuttavuutta tutkittiin opiskelijoiden käsitysten avulla. Otos sisälsi 22 opiskelijaa, jotka jaettiin kolmeen kohderyhmään. Aineisto analysoitiin ja luokiteltiin laadullisen sisältöanalyysin avulla käyttäen TPASK (Technology Pedagogical Science Knowledge) -kehystä. Tulosten perusteella opiskelijat hankkivat kontekstualisoitua kemian osaamista ja kehittivät taitoja ja tietoja, jotka liittyvät digitaalisten resurssien ja laskentataulukoiden käyttöön tieteellisessä yhteydessä. Tämä tapaustutkimus osoittaa, että ongelmapohjaisen oppimisen lähestymistapa tarjoaa suuren potentiaalin edellä mainittujen taitojen tukemiseen.Teaching the fundamentals of chemical kinetics on the college level is challenging to teachers and students alike due to its abstract nature of concepts and limited connection with real context applications. This study consisted of two phases starting with designing a chemistry education for the sustainable development-based learning environment of reaction kinetics, followed by a case study in which students' perceptions toward learning chemistry by solving a real environmental problem using digital resources, spreadsheets, and an active learning environment, were explored. First, we designed a Socio-Scientific Environmental Chemistry module centered on the sorption kinetic processes of herbicides in volcanic ash derived soils (VADS) and their potential to pollute groundwater. The objective of the learning module was to contribute to the development of sustainability skills, to promote learning of contextualized chemistry knowledge, and to develop scientific skills. This module employs spreadsheets as computational tools in chemistry to model real sorption kinetic data of herbicides in VADS. The learning module was designed for one section of two Analytical Chemistry courses and one Physical Chemistry course of an undergraduate chemistry teacher-training program. After the design phase, the learning module was implemented in each course, and students' perceptions were gathered using the focus group technique. The sample was of 22 students distributed into three focus groups. The data collected were analyzed and categorized through qualitative content analysis using the Technological Pedagogical Science Knowledge (TPASK) framework. On the basis of our findings, the students acquired contextualized chemistry knowledge and develop skills and knowledge related to using digital resources and spreadsheets in a scientific context. Besides, the preservice chemistry teachers' knowledge of pedagogy allowed them to develop some elements of their pedagogical science knowledge and TPASK. This case study shows that the problem-based learning approach offers great potential in supporting a learning environment suitable to working with spreadsheets to solve real-environment problems in chemistry education.Peer reviewe

    Educational Computational Chemistry for In-Service Chemistry Teachers: A Data Mining Approach to E-Learning Environment Redesign

    No full text
    The use of technology in education has experienced significant growth in recent years. In this regard, computational chemistry is considered a dynamic element due to the constant advances in computational methods in chemistry, making it an emerging technology with high potential for application in teaching chemistry. This article investigates the characteristics and perceptions of in-service chemistry teachers who participated in an e-learning educational computational chemistry course. Additionally, it examines how educational data mining techniques can contribute to optimising and developing e-learning environments. The results indicate that teachers view incorporating computational chemistry elements in their classes positively but that this is not profoundly reflected in their teaching activity planning. On the other hand, generated statistical models demonstrate that the most relevant variables to consider in the instructional design of an e-learning educational computational chemistry course are related to participation in various course instances and partial evaluations. In this sense, the need to provide additional support to students during online learning is highlighted, especially during critical moments such as evaluations. In conclusion, this study offers valuable information on the characteristics and perceptions of in-service chemistry teachers and demonstrates that educational data mining techniques can help improve e-learning environments

    Constructing a Novel E-Learning Course, Educational Computational Chemistry through Instructional Design Approach in the TPASK Framework

    No full text
    The educational scenario after the COVID-19 confinement presents new challenges for teachers. Technological advances require teachers to be prepared for instruction through technology, and with this, the need for e-learning courses arose to strengthen this knowledge. This article aims to describe an innovative e-learning course in Educational Computational Chemistry (ECC) for in-service chemistry teachers through an Instructional Design (ID) that allows the development of the constructs associated with the Technological Pedagogical Science Knowledge (TPASK) framework. From the literature overview, relevant findings were raised concerning ID and its potential technological support. The results indicate that an effective ID must present general elements, such as the organisation and generation of content, progress monitoring, and feedback instances. However, the stages of engagement, flexibility, and positioning are relevant elements. These design elements are linked to emerging technological tools, such as artificial intelligence for generating audiovisual material, interactive content development, and event logs. In addition, positive results are evident from the teachers who participated in the ECC e-learning course, who project the knowledge, computer skills, and learning acquired into their professional work as chemistry teachers. Based on the above, a course design for ECC is proposed with general guidelines that contribute to the continuous training of in-service chemistry teachers

    The Effects of Using Socio-Scientific Issues and Technology in Problem-Based Learning : A Systematic Review

    Get PDF
    Currently, a growing number of learning institutions at all educational levels are including problem-based learning (PBL) in their curricula. PBL scenarios often utilise technology and socio-scientific Issues (SSI), which enables the simultaneous learning of content and creative thinking and working skills needed in generating new knowledge for the future. In this sense, using SSI and technological tools in PBL learning environments can be viewed as a starting point for acquiring and integrating new knowledge. However, there is no comprehensive knowledge regarding the possibilities of this approach. The objective of this systematic review is to produce this knowledge via the PRISMA method. The strategy is used to explore the effects of the described approach through implementations conducted at secondary and undergraduate levels. The data consisted of 33 research articles that were categorised via qualitative content analysis. According to the results, PBL scenarios exploit mainly local SSIs that link scientific knowledge with a meaningful context for students. Technology is principally used in offering technical support for teaching tasks. Lastly, these results are discussed from the technological pedagogical science knowledge (TPASK) framework perspective, which proposes guidelines for achieving the Sustainable Development Goals (SDG)

    Open-Source Software Development in Cheminformatics: A Qualitative Analysis of Rationales

    No full text
    This qualitative research explored the rationales of open-source development in cheminformatics. The objective was to promote open science by mapping out and categorizing the reasons why open-source development is being carried out. This topic is important because cheminformatics has an industrial background and open-source is the key solution in promoting the growth of cheminformatics as an independent academic field. The data consisted of 87 research articles that were analyzed using qualitative content analysis. The analysis produced six rationale categories: (1) Develop New Software, (2) Update Current Features, Tools, or Processes, (3) Improve Usability, (4) Support Open-source Development and Open Science, (5) Fulfill Chemical Information Needs, and (6) Support Chemistry Learning and Teaching. This classification can be used in designing rationales for future software development projects, which is one of the largest research areas in cheminformatics. In particular, there is a need to develop cheminformatics education for which software development can serve as an interesting multidisciplinary framework

    Controlled Ag-TiO2 heterojunction obtained by combining physical vapor deposition and bifunctional surface modifiers

    No full text
    A controlled physical method without any solvent was used to grow Ag nanoparticles on TiO2 by use of mercaptoacetic acid as a bifunctional surface modifier. The fabricated Ag-TiO2 tight heterojunction was proposed as an innovative photocatalytic material. The particle size, chemical nature, morphology, and chemical bonding between mercaptoacetic acid, Ag, and TiO2 were characterized by UV–vis absorption spectroscopy, powder X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and scanning electron microscopy. The photocatalytic activity of TiO2 combined with the excellent electron acceptor abilities and visible light absorption of small spherical Ag nanoparticles resulted in efficient photoinduced degradation of a cationic organic pollutant (methylene blue) under UV–vis light. The nanocatalyst material obtained with a sputter time of 30 s under simulated sunlight results in almost complete degradation (97%) of methylene blue after 120 min. The particle size, tight attachment to TiO2, and distribution of Ag nanoparticles were controlled for the first time through a physical method by use of controlled chemical bonding to bifunctional surface modifiers and an appropriate sputter deposition time.The authors acknowledge Vicerrectoría Académica UC grant VRA-39131781 and Faculty of Chemistry financing UC-3913-529-81 for financial support. This research received funding from Consejo Superior de Investigaciones Científicas, Spain, under grant I-COOP LIGHT 2015CD0013.Peer reviewe

    Impact on Some Soil Physical and Chemical Properties Caused by Metal and Metallic Oxide Engineered Nanoparticles: A Review

    No full text
    In recent years, the release of metal and metallic oxide engineered nanoparticles (ENPs) into the environment has generated an increase in their accumulation in agricultural soils, which is a serious risk to the ecosystem and soil health. Here, we show the impact of ENPs on the physical and chemical properties of soils. A literature search was performed in the Scopus database using the keywords ENPs, plus soil physical properties or soil chemical properties, and elements availability. In general, we found that the presence of metal and metallic oxide ENPs in soils can increase hydraulic conductivity and soil porosity and reduce the distance between soil particles, as well as causing a variation in pH, cation exchange capacity (CEC), electrical conductivity (EC), redox potential (Eh), and soil organic matter (SOM) content. Furthermore, ENPs or the metal cations released from them in soils can interact with nutrients like phosphorus (P) forming complexes or precipitates, decreasing their bioavailability in the soil solution. The results depend on the soil properties and the doses, exposure duration, concentrations, and type of ENPs. Therefore, we suggest that particular attention should be paid to every kind of metal and metallic oxide ENPs deposited into the soil

    Study of Sorption Kinetics and Sorption–Desorption Models to Assess the Transport Mechanisms of 2,4-Dichlorophenoxyacetic Acid on Volcanic Soils

    No full text
    The sorption behavior of 2,4-dichlorophenoxyacetic acid (2,4-D) in the abundant agricultural volcanic ash-derived soils (VADS) is not well understood despite being widely used throughout the world, causing effects to the environment and human health. The environmental behavior and risk assessment of groundwater pollution by pesticides can be evaluated through kinetic models. This study evaluated the sorption kinetics and 2,4-D sorption–desorption in ten VADS through batch sorption experiments. Differences in the sorption extent for the fast and slow phases was observed through the IPD model where 2,4-D sorption kinetics was controlled by external mass transfer and intra organic matter diffusion in Andisols (C1 ≠ 0). We confirmed from the spectroscopic analysis that the carboxylate group directly drives the interaction of 2,4-D on Andisol soil. The MLR model showed that IEP, FeDCB, and pH×Silt are important soil descriptors in the 2,4-D sorption in VADS. The Freundlich model accurately represented sorption equilibrium data in all cases (Kf values between 1.1 and 24.1 µg1−1/n mL1/ng−1) with comparatively higher sorption capacity on Andisols, where the highest hysteresis was observed in soils that presented the highest and lowest OC content (H close to 0)
    corecore